3.383 \(\int \frac{x \sqrt{1-c^2 x^2}}{(a+b \sin ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=150 \[ \frac{\cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{4 b^2 c^2}+\frac{3 \cos \left (\frac{3 a}{b}\right ) \text{CosIntegral}\left (\frac{3 \left (a+b \sin ^{-1}(c x)\right )}{b}\right )}{4 b^2 c^2}+\frac{\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{4 b^2 c^2}+\frac{3 \sin \left (\frac{3 a}{b}\right ) \text{Si}\left (\frac{3 \left (a+b \sin ^{-1}(c x)\right )}{b}\right )}{4 b^2 c^2}-\frac{x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )} \]

[Out]

-((x*(1 - c^2*x^2))/(b*c*(a + b*ArcSin[c*x]))) + (Cos[a/b]*CosIntegral[(a + b*ArcSin[c*x])/b])/(4*b^2*c^2) + (
3*Cos[(3*a)/b]*CosIntegral[(3*(a + b*ArcSin[c*x]))/b])/(4*b^2*c^2) + (Sin[a/b]*SinIntegral[(a + b*ArcSin[c*x])
/b])/(4*b^2*c^2) + (3*Sin[(3*a)/b]*SinIntegral[(3*(a + b*ArcSin[c*x]))/b])/(4*b^2*c^2)

________________________________________________________________________________________

Rubi [A]  time = 0.370196, antiderivative size = 198, normalized size of antiderivative = 1.32, number of steps used = 14, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {4721, 4623, 3303, 3299, 3302, 4635, 4406} \[ -\frac{3 \cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{4 b^2 c^2}+\frac{3 \cos \left (\frac{3 a}{b}\right ) \text{CosIntegral}\left (\frac{3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b^2 c^2}+\frac{\cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}-\frac{3 \sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{4 b^2 c^2}+\frac{3 \sin \left (\frac{3 a}{b}\right ) \text{Si}\left (\frac{3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b^2 c^2}+\frac{\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}-\frac{x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[1 - c^2*x^2])/(a + b*ArcSin[c*x])^2,x]

[Out]

-((x*(1 - c^2*x^2))/(b*c*(a + b*ArcSin[c*x]))) - (3*Cos[a/b]*CosIntegral[a/b + ArcSin[c*x]])/(4*b^2*c^2) + (3*
Cos[(3*a)/b]*CosIntegral[(3*a)/b + 3*ArcSin[c*x]])/(4*b^2*c^2) + (Cos[a/b]*CosIntegral[(a + b*ArcSin[c*x])/b])
/(b^2*c^2) - (3*Sin[a/b]*SinIntegral[a/b + ArcSin[c*x]])/(4*b^2*c^2) + (3*Sin[(3*a)/b]*SinIntegral[(3*a)/b + 3
*ArcSin[c*x]])/(4*b^2*c^2) + (Sin[a/b]*SinIntegral[(a + b*ArcSin[c*x])/b])/(b^2*c^2)

Rule 4721

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
((f*x)^m*Sqrt[1 - c^2*x^2]*(d + e*x^2)^p*(a + b*ArcSin[c*x])^(n + 1))/(b*c*(n + 1)), x] + (-Dist[(f*m*d^IntPar
t[p]*(d + e*x^2)^FracPart[p])/(b*c*(n + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p - 1/
2)*(a + b*ArcSin[c*x])^(n + 1), x], x] + Dist[(c*(m + 2*p + 1)*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(b*f*(n +
 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n + 1), x], x])
 /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && IGtQ[m, -3] && IGtQ[2*p, 0]

Rule 4623

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cos[a/b - x/b], x], x, a
 + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 4635

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*S
in[x]^m*Cos[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rubi steps

\begin{align*} \int \frac{x \sqrt{1-c^2 x^2}}{\left (a+b \sin ^{-1}(c x)\right )^2} \, dx &=-\frac{x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac{\int \frac{1}{a+b \sin ^{-1}(c x)} \, dx}{b c}-\frac{(3 c) \int \frac{x^2}{a+b \sin ^{-1}(c x)} \, dx}{b}\\ &=-\frac{x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac{\operatorname{Subst}\left (\int \frac{\cos \left (\frac{a}{b}-\frac{x}{b}\right )}{x} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b^2 c^2}-\frac{3 \operatorname{Subst}\left (\int \frac{\cos (x) \sin ^2(x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{b c^2}\\ &=-\frac{x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )}-\frac{3 \operatorname{Subst}\left (\int \left (\frac{\cos (x)}{4 (a+b x)}-\frac{\cos (3 x)}{4 (a+b x)}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{b c^2}+\frac{\cos \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{x}{b}\right )}{x} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b^2 c^2}+\frac{\sin \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{x}{b}\right )}{x} \, dx,x,a+b \sin ^{-1}(c x)\right )}{b^2 c^2}\\ &=-\frac{x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac{\cos \left (\frac{a}{b}\right ) \text{Ci}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}+\frac{\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}-\frac{3 \operatorname{Subst}\left (\int \frac{\cos (x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c^2}+\frac{3 \operatorname{Subst}\left (\int \frac{\cos (3 x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c^2}\\ &=-\frac{x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac{\cos \left (\frac{a}{b}\right ) \text{Ci}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}+\frac{\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}-\frac{\left (3 \cos \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c^2}+\frac{\left (3 \cos \left (\frac{3 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cos \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c^2}-\frac{\left (3 \sin \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c^2}+\frac{\left (3 \sin \left (\frac{3 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sin \left (\frac{3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 b c^2}\\ &=-\frac{x \left (1-c^2 x^2\right )}{b c \left (a+b \sin ^{-1}(c x)\right )}-\frac{3 \cos \left (\frac{a}{b}\right ) \text{Ci}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{4 b^2 c^2}+\frac{3 \cos \left (\frac{3 a}{b}\right ) \text{Ci}\left (\frac{3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b^2 c^2}+\frac{\cos \left (\frac{a}{b}\right ) \text{Ci}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}-\frac{3 \sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )}{4 b^2 c^2}+\frac{3 \sin \left (\frac{3 a}{b}\right ) \text{Si}\left (\frac{3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b^2 c^2}+\frac{\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a+b \sin ^{-1}(c x)}{b}\right )}{b^2 c^2}\\ \end{align*}

Mathematica [A]  time = 0.282707, size = 125, normalized size = 0.83 \[ \frac{\frac{4 b c^3 x^3}{a+b \sin ^{-1}(c x)}+\cos \left (\frac{a}{b}\right ) \text{CosIntegral}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )+3 \cos \left (\frac{3 a}{b}\right ) \text{CosIntegral}\left (3 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )+\sin \left (\frac{a}{b}\right ) \text{Si}\left (\frac{a}{b}+\sin ^{-1}(c x)\right )+3 \sin \left (\frac{3 a}{b}\right ) \text{Si}\left (3 \left (\frac{a}{b}+\sin ^{-1}(c x)\right )\right )-\frac{4 b c x}{a+b \sin ^{-1}(c x)}}{4 b^2 c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[1 - c^2*x^2])/(a + b*ArcSin[c*x])^2,x]

[Out]

((-4*b*c*x)/(a + b*ArcSin[c*x]) + (4*b*c^3*x^3)/(a + b*ArcSin[c*x]) + Cos[a/b]*CosIntegral[a/b + ArcSin[c*x]]
+ 3*Cos[(3*a)/b]*CosIntegral[3*(a/b + ArcSin[c*x])] + Sin[a/b]*SinIntegral[a/b + ArcSin[c*x]] + 3*Sin[(3*a)/b]
*SinIntegral[3*(a/b + ArcSin[c*x])])/(4*b^2*c^2)

________________________________________________________________________________________

Maple [A]  time = 0.049, size = 223, normalized size = 1.5 \begin{align*}{\frac{1}{4\,{c}^{2} \left ( a+b\arcsin \left ( cx \right ) \right ){b}^{2}} \left ( 3\,\arcsin \left ( cx \right ){\it Si} \left ( 3\,\arcsin \left ( cx \right ) +3\,{\frac{a}{b}} \right ) \sin \left ( 3\,{\frac{a}{b}} \right ) b+3\,\arcsin \left ( cx \right ){\it Ci} \left ( 3\,\arcsin \left ( cx \right ) +3\,{\frac{a}{b}} \right ) \cos \left ( 3\,{\frac{a}{b}} \right ) b+\arcsin \left ( cx \right ){\it Si} \left ( \arcsin \left ( cx \right ) +{\frac{a}{b}} \right ) \sin \left ({\frac{a}{b}} \right ) b+\arcsin \left ( cx \right ){\it Ci} \left ( \arcsin \left ( cx \right ) +{\frac{a}{b}} \right ) \cos \left ({\frac{a}{b}} \right ) b+3\,{\it Si} \left ( 3\,\arcsin \left ( cx \right ) +3\,{\frac{a}{b}} \right ) \sin \left ( 3\,{\frac{a}{b}} \right ) a+3\,{\it Ci} \left ( 3\,\arcsin \left ( cx \right ) +3\,{\frac{a}{b}} \right ) \cos \left ( 3\,{\frac{a}{b}} \right ) a+{\it Si} \left ( \arcsin \left ( cx \right ) +{\frac{a}{b}} \right ) \sin \left ({\frac{a}{b}} \right ) a+{\it Ci} \left ( \arcsin \left ( cx \right ) +{\frac{a}{b}} \right ) \cos \left ({\frac{a}{b}} \right ) a-xbc-\sin \left ( 3\,\arcsin \left ( cx \right ) \right ) b \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x)

[Out]

1/4/c^2*(3*arcsin(c*x)*Si(3*arcsin(c*x)+3*a/b)*sin(3*a/b)*b+3*arcsin(c*x)*Ci(3*arcsin(c*x)+3*a/b)*cos(3*a/b)*b
+arcsin(c*x)*Si(arcsin(c*x)+a/b)*sin(a/b)*b+arcsin(c*x)*Ci(arcsin(c*x)+a/b)*cos(a/b)*b+3*Si(3*arcsin(c*x)+3*a/
b)*sin(3*a/b)*a+3*Ci(3*arcsin(c*x)+3*a/b)*cos(3*a/b)*a+Si(arcsin(c*x)+a/b)*sin(a/b)*a+Ci(arcsin(c*x)+a/b)*cos(
a/b)*a-x*b*c-sin(3*arcsin(c*x))*b)/(a+b*arcsin(c*x))/b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{c^{2} x^{3} - x - \frac{{\left (b^{2} c \arctan \left (c x, \sqrt{c x + 1} \sqrt{-c x + 1}\right ) + a b c\right )}{\left (3 \, c^{2} \int \frac{x^{2}}{b \arctan \left (c x, \sqrt{c x + 1} \sqrt{-c x + 1}\right ) + a}\,{d x} - \int \frac{1}{b \arctan \left (c x, \sqrt{c x + 1} \sqrt{-c x + 1}\right ) + a}\,{d x}\right )}}{b c}}{b^{2} c \arctan \left (c x, \sqrt{c x + 1} \sqrt{-c x + 1}\right ) + a b c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

(c^2*x^3 - (b^2*c*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c)*integrate((3*c^2*x^2 - 1)/(b^2*c*arctan2
(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c), x) - x)/(b^2*c*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*
c)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-c^{2} x^{2} + 1} x}{b^{2} \arcsin \left (c x\right )^{2} + 2 \, a b \arcsin \left (c x\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*x^2 + 1)*x/(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \sqrt{- \left (c x - 1\right ) \left (c x + 1\right )}}{\left (a + b \operatorname{asin}{\left (c x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c**2*x**2+1)**(1/2)/(a+b*asin(c*x))**2,x)

[Out]

Integral(x*sqrt(-(c*x - 1)*(c*x + 1))/(a + b*asin(c*x))**2, x)

________________________________________________________________________________________

Giac [B]  time = 1.51697, size = 821, normalized size = 5.47 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

3*b*arcsin(c*x)*cos(a/b)^3*cos_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 3*b*arcsin(
c*x)*cos(a/b)^2*sin(a/b)*sin_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 3*a*cos(a/b)^
3*cos_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 3*a*cos(a/b)^2*sin(a/b)*sin_integral
(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + (c^2*x^2 - 1)*b*c*x/(b^3*c^2*arcsin(c*x) + a*b^2*c
^2) - 9/4*b*arcsin(c*x)*cos(a/b)*cos_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 1/4*b
*arcsin(c*x)*cos(a/b)*cos_integral(a/b + arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) - 3/4*b*arcsin(c*x)*si
n(a/b)*sin_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 1/4*b*arcsin(c*x)*sin(a/b)*sin_
integral(a/b + arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) - 9/4*a*cos(a/b)*cos_integral(3*a/b + 3*arcsin(c
*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 1/4*a*cos(a/b)*cos_integral(a/b + arcsin(c*x))/(b^3*c^2*arcsin(c*x) +
 a*b^2*c^2) - 3/4*a*sin(a/b)*sin_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 1/4*a*sin
(a/b)*sin_integral(a/b + arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2)